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We investigate in detail the dependence of the velocity autocorrelation 
function of a one-dimensional system of hard, point particles with a simple 
velocity distribution function (all particles have velocities ~e)  on the size of 
the system. In the thermodynamic limit, when both the number of particles N 
and the length of the "box" L approach infinity and N / L  .--~ p, the velocity 
autocorrelation function ~b(t) is given simply by c ~" exp(--2pct).  For a finite 
system, the function ~bn,(t) is periodic with period 2L/e. W e  also show that for 
more general velocity distribution functions (particles can have velocities 
: -c i ,  i = 1,...), ~b~-(t) is an almost periodic function of t. These examples 
illustrate the role of the thermodynamic limit in nonequilibrium phenomena: 
We must keep t fixed while letting the size of the system become infinite to 
obtain an auto-correlation function, such as ~b(t), which decays for all times 
and can be integrated to obtain transport coefficients. For any finite system, 
our ~/%(t) will be "'very close" to ,~(t) as long as t is small compared to the 
effective "size" of the system, which is 2L/c for the first model. 

KEY WORDS: One dimension; finite system; thermodynamic limit; 
velocity autocorrelation function. 

1. I N T R O D U C T I O N  

T h e  s tudy  o f  t i m e - d e p e n d e n t  c o r r e l a t i o n  func t ions  p lays  a cen t ra l  role  in the  

s ta t is t ical  m e c h a n i c s  o f  n o n e q u i l i b r i u m  p h e n o m e n a .  These  func t ions  a re  
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defined as follows: Consider a classical system of N particles whose positions 
and momenta (that is, the configuration of the system) are specified by a point 
X, X = (rx ..... ru ; Pl ..... PN), in the phase space of the system. The position 
coordinates r~ are confined to some domain A with volume V(A) by "rigid 
walls." The time evolution of the system is described by a unitary operator 
st, stX ~ Xt being the phase point of the system at time t when it was X at 
time zero, and sqst~ = sq+t... L e t f ( X )  and g(X) be some functions of X, the 
configuration of  the system. For a given configuration X at time zero, the 
value of f a t  time t is given by sd(X)  --f(Xt).  We define the correlation of f a t  
time t and g at time zero as 

( f( t)  g)N = (f(Xt) g(X))u 

=-- f dX tzo(X)f(X,) g(X) 
, )  

(i) 

where/z0(X ) is some stationary (equilibrium) Gibbsian ensemble density, e.g., 
microcanonical or canonical such that 

and 

m(xt)  = t,0(x) 

f dX/xo(X ) = I (2) 

We have used the subscript N on ( f ( t )  g)n to indicate explicitly that we are 
dealing with systems of  N particles. 

One reason for the importance of time-dependent correlation functions 
is that linear transport coefficients may be expressed as time integrals over 
appropriate correlation functions. For example, Einstein related the self- 
diffusion constant D to the integral of the velocity autocorrelation function 
by 

D = ( i / d ) |  a t ( v ( t ) . v )  (3) 
It 

0 

where d is the dimensionality of the system and v is the velocity of some 
specified particle in the system. 

The function r = (v(t) �9 v) appearing in (3) (and different correlation 
functions appearing in other formulas of this type) has to be interpreted as 
the limit of the velocity autocorrelation (v(t) �9 v)u for a system of N particles 
in a domain A, when N ~ ~ and V(A) ~ co in such a way that N/V(A) - p, 
the density of the system. This limit is usually called the "thermodynamic 
limit." The taking of such an infinite volume limit is always necessary, since 
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for a finite system, the integral of (v(t) �9 V ) N  , i f  it exists, is equal to zero. ~1~ 
This is due to the fact that 

| dt' (v(t') �9 V)N -~ ~(~/~'t)({r(t) -- r}z)N (4) 
,d 

0 

where r is the position coordinate conjugate to the velocity (momentum) v. 
Now, since the right side of  (4) is the derivative of  a bounded function (since 
r is confined to a bounded domain A), it cannot have a limit as t--+ 
different from zero. For  the model system we shall consider in this paper, the 
existence of  the limit t - ~  ~ depends on the type of stationary ensemble 
Fo(X) we choose. 

The use of  the thermodynamic limit of the correlation functions in 
defining transport coefficients forces us to consider the existence of  limits 
such as 

4Kt) = lim (v(t) �9 v~.~, (5) 
N ~ z c  

While the existence of the thermodynamic limit for different equilibrium 
quantities has been established under fairly general conditions, there are 
few results for nonequilibrium quantities. Indeed, the only "fluid" system 
for which 4J(t) is known to exist is the one-dimensional system of hard point 
particles studied by Jepsen z and others <3-~ ''~ for which D can be found explicit- 
ly. (The ideal gas <~ and perfect harmonic crystal are the only other dynamical 
model systems for which the correlation functions can be computed 
exactly, t~>) It is the purpose of this note to study the behavior of ~N(t) and its 
approach to ~b(t) for this system. 

The system of  hard, point particles is described in Section 2. Due to the 
simplicity of the dynamics of  this system, we can readily find a large class of 
stationary distributions. In particular, we can choose F0(X) in such a way 
that the ensemble density is concentrated in regions of  the phase space in 
which the velocities of the particles only assume a denumerable (or finite) set 
of  values. Since the phase space has 2N dimensions and these regions have an 
N-dimensional volume, this is only possible because this system is not 
ergodic on its energy surfaces, which are of 2N -- 1 dimensions. 

We show in Section 3 that for all stationary distributions of the above 
type, ~bN(t) will be an almost periodic function of t. It will therefore not decay 
as t - ~  ~ and therefore the upper limit of  integration in (4) cannot be 
extended to infinity. To see what happens in the thermodynamic limit, we 
study, in Section 4, a particularly simple stationary distribution. For  this 
distribution, the configuration of the system and hence all time-dependent 
correlation functions are periodic functions of  the time with a period which 
is proportional to the length of the box. We obtain ~ , ( t )  explicitly for this 
F0(X) and observe how it approaches its limit ~b(t) which decays to zero as 
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t -~  ~ yielding a finite diffusion coefficient D. Finally, the extension of 
these results to some other equilibrium distributions/z0(X ) is discussed in 
Section 5. 

2. T H E  O N E - D I M E N S I O N A L  SYSTEM 
O F  H A R D  P O I N T  PART ICLES 

We consider a system of N hard, point particles of unit mass moving in 
one dimension, like a row of beads on an abacus. The particles are confined 
to a "box" of length L and we impose reflecting boundary conditions so 
that when a particle strikes a wall of the box, it is specularly reflected. Since 
all the particles are hard, when two of them collide, they simply exchange 
velocities. Thus, any initial distribution of velocities will be preserved at all 
later times (apart from changes in sign caused by collisions with the walls). 
This means that any distribution function of the form 

N 

~0(X) =: (I/L N) I-I ho(v,) (6) 
i = 1  

with ho(v) an arbitrary, nonnegative, even function of v normalized to unity, 

ho(V) = ho(--~) >1 o 

and 
4 0 0  

[ dv ho(v) = 1 (7 )  
, I  - o o  

is stationary. 
The method used for calculating ~bN(t) will follow closely the paper of 

Lebowitz and Percus, c4) who solved the same problem in the thermodynamic 
limit. A formal expression can be obtained for 4iN(t) by noticing that the 
order of the particles in the box is maintained at all times: If  a particle is 
initially the ith particle from the left wall of the box, then it will always be 
the ith particle because there is no mechanism by which it can pass either of 
its nearest neighbors. We can thus calculate ~u(t) by allowing the particles to 
evolve independently on free-particle trajectories provided the correct 
ordering of the particles is maintained. The resulting expression is 

N N 

t,,,,(t) = O/N)  Y~ Y~ <,~(t) v, 8o,(,).o,> (8) 
i = 1  j = l  

Here, (Tj(t) is the order of thejth particle at time t and is given by 

N 

%(t)  -~ Z , (r j ( t )  - -  r~(t)) (9) 
l = 1  
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where 

E(x) == 10 for x -< 0 (10) 
~l for 0 < x  

and {r~(t), vi(t)} are the positions and velocities of  a set o f f i ' e e  p a r t i c l e s  (ideal 
gas) moving in the box of  length L, that is, 

vi( t )  = v~ ; r i ( t )  = r~ -I- v d  (11) 

sub j ec t  to the  re f l ec t ing  bomTdao~ condi t ions .  
Equat ion (8) can be handled more easily by writing the r as 

= (1/2~-) ] dO exp{ iO[a j ( t )  - -  cr~]} (12) 
d 

0 

Then by using Eq. (9), separating the summations in (8) into two parts 
depending on whether  i = j  or i -A j, using the symmetry properties of  the 
average, and defining 

(L dr,  [ "~~ 
Eo(R,  r l t )  := - ~ -  dr ,  ho(v,)  

�9 {} * - - a s  

• exp{ iO[E(R - -  r~(t)) - -  e(r  - -  rt)]} (13) 

which from (1 l) is only a function of  R, r, 0, and t, we find 

' r  
�9 " d q  dr1 h o ( v l ) v l ( t )  L'z dO Eo(rl ( t  ), r l ] t )  N-1 

21rL . o - ~  - o 

drz dr1 h0(Vl) -[o dro_ i dr2 h0(v2) v.2(t) 

~o. n 

• | -  dO exp{iO[e(r2( t )  - -  r l ( t ) )  - -  E(r, - -  r,.,)]} Eo(r2(t ), r, I t )  N-2 
d o (14) 

When t := O, 

Eo(R,  r iO)  =: 1 § / (s in O)[(R --  r ) / L ]  - -  (1 --  cos 0)([ R --- r I /L)  

and from Eq. (14), 

-- | dr, h0(vl)  e l '  = (v") 
d - - o o  

as expected�9 
We note here that these formulas remain valid when the particles have 

hard cores c4) (rigid-rod system). If  the minimum distance of  approach between 
the centers of  two particles is a then we merely have to replace L by L - -  N a  
everywhere. 

82 z/6/2/3-7 
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3. D I S C R E T E  V E L O C I T Y  D I S T R I B U T I O N S  

In order  to discuss the dynamics  of  the system, we follow Jepsen c'~ and 
construct  a phase diagram. A simple d iagram showing the mot ion  o f  two 
particles with velocities _ c ,  c > 0, is given in Fig. 1. The  trajectory which 
starts a t  posi t ion a with velocity c passes through L --  a with velocity - -c  at  
t - L / c  and rcturns to a with velocity c at  t = 2L/c .  Similar results hold for  
the trajectory which started at b with velocity --c .  I t  is clear that  after a t ime 
t =: 2L/c ,  the two particles have returned exactly to their initial t -: 0 
configurations.  The  particles then follow the same trajectories as before. 
Thus the time dependence o f  the functions r~(t) and v~(t) in (11) is periodic 
with a period 7",. = 2L/I vi :, �9 

Consider  now the case in which the equilibrium velocity distr ibution 
function ho(v) is purely discrete, i.e., 

ho(v) = ~ ~ K~[8(r' - -  c~) -1- 8(c -t- c,)] 
/ = I  

(15) 

c o  

with 0 < c ~  < c 2 < c a ' " , K e > 0 ,  and Z ~ = l K z - -  1. We assumc further 
that  the mean energy per  particle is finite, 

@2 5 = ~ Kzc~ 2 < oo (16) 
l , . l  

7 2 _ / z  . . . . .  E . . _ . .  --~ 

( )  L - D  o t_ o b I_ 

Fig. l. Phase diagram for two particles. 
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The velocity autocorre la t ion  function can be written in the form (as can be 
inferred f rom the appendix)  

. . .  f ,  x,,  ... . . . .  ( ,7)  
/ 1.,.1 l.,v--1 

where 

r~ = c~t/2L--= t i t  s 

and l]1...z N is a continuous,  symmetric,  periodic function in the T~,, 

Fq...z,.(rq t -  mq ..... 71.~. -:- m~,) --- Fz,...t.,.(% ,..., %,.) (18) 

with {m~,}, i = 1 ..... N, a set o f  integers. The function Fzc..t~.(~- q ..... r~.,.) 
(which is o f  the type called "quas iper iodic"  by Moser  ~v) and "Bohl  funct ion"  
by Bohr (8~) is the velocity autocorre la t ion function of  a system of  N hard,  
point  particles on a line segment of  length L in which there is exactly one 
particle with velocity = % ,  one particle with velocity :kcz, ,  etc., cor- 
responding to a s ta t ionary distribution 

-- ( l /N! )  S I(1/LN) , .  ~[3(v, .... + cS(v, + (19) /zo(X) 
( i = 1  

where S stands for  symmetr iza t ion in the 1~. Hence,  Fq...z u is bounded by its 
value at t - 0, z 

N 

(20) , F~ , . . . . (~ , ,  .... , ~,~,)', ~ ( i / X )  y c,, 
! '=1 

and the series in (17) is uniformly convergent.  It follows now f rom the general 
theory of  a lmost  periodic functions ~8~ that  CN(t), obtained f rom an arbi t rary 
discrete velocity distribution, is a lmost  periodic and therefore, in part icular ,  
cannot  decay to  zero as t -~  oo. 

The situation is quite different when ho(v) is an absolutely cont inuous 
function o f  v. In that  case, the summat ions  in (17) are replaced by integrals 
and we expect ~bu(t) to decay as t ~ oo. When ho(v) contains both a discrete 
and a cont inuous part ,  then ~N(t) should also have an a lmost  periodic par t  
and a decaying part.  

4. E X P L I C I T  R E S U L T S  F O R  ho(v ) " -  }[S(v - -  c) 4" S(v "i- c)]  

In order  to see in detail the effect which an increase in the size of  the 
system has ola its nonequi l ibr ium properties,  we shall now compute  Cu(t) 
explicitly for the case in which all the particles have the same speed, i.e., 

ho(v) = ~[8(v - -  c) -"  3(v -b c)], c > 0 (21) 

3 This follows from ( f ( t ) f )  < (f~-ft))li2<fz) z/2 = ( fz) .  
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Since the period of  all the particles is now the same, we have 

~bN(t + T) ---- ~hu(t), T = 2LIe  (22) 

and we need only calculate ~b~,(t) for times t in the range 0 < t < 1". 
Let us now consider the trajectories in Fig. 1 during the first cycle. I f  the 

trajectories are reflected in the line at  t = L/c  ( ~  T/2), then the first t rajectory 
starts at  a with velocity - - c  and the second at b with velocity c. The mot ion  
of  two particles along the reflected trajectories in the forward  time direction 
f rom t = 0 to t = T is exactly the same as the mot ion  o f  the two particles 
a long the original trajectories in the backward  time direction f rom t .... T to 
t = 0. Since ~bN(t) contains an average over  all possible velocities (as well as 
positions),  both  the original and the reflected trajectories give contr ibut ions 
to ~bN(t). I f  the contr ibut ion o f  the original trajectories in Fig. 1 is hN(t), then 
the reflected trajectories give h N ( T -  t) and the total  contr ibut ion is 
hu( t )  + h N ( T  - -  t). As all possible configurations can be arranged in pairs as 
the above simple example,  ~bu(t) must  be of  the fo rm 

~[Ju(t) = H,v(t) + H . ~ , ( T -  t) 

Thus, for 0 < t < T, 

~ N ( T - -  t) -.= ~bN(t) (23) 

which means we need only determine ~N(l) in the range 0 < t < T/2. 
This is as far as we can go with general a rguments  and we must  return 

to Eq. (14) to obta in  an explicit expression for ~JN(t). AS the calculation is 
simple but  rather  long, we give the details in the appendix and  quote the 
result here: 

~bu(t) = c2{(1 - -  x)(l - -  2x) 'v-~ - -  ( I /2N)[ I  - -  (1 --  2x)N]} (24) 

where 

x = ct /L = 2 t i t  (25) 

and 0 ~ x ~ 1 or  0 ~ t ~ T/2. Outside this range, ~u( t )  can be found by 
using Eqs. (22) and (23). In part icular ,  

q,u(o)  = r  c ~ 

For  small values of  N, ~tsu(t) is very simple. For  example,  when N --- I, 

4,1(t) = c ~ ( l  - - 2 x )  for 0 ~ x  ~< 1 

o r  

~b~(t)/~,(O) = 1 --  (4 t /T)  for 0 <~ t ~ T/2 
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t 
j ~ -4 x 

1 

J 
i 

Fig. 2. Plots of ~.~,(t);~O) for N := 2 and 4 and ~(t)/~(0) for P = 4-L 
as functions of x -- ct;L for ho(v) given in Eq. (21). 

Thus, when t increases f rom 0 to 7"/2, ~bz(t)/r decreases linearly f rom l 
to --1 and when t increases f rom T/2 to T, ~bl(t)/~bz(O) increases linearly 
f rom ---1 to 1. The first cycle has now been completed and the system starts 
again from its initial (t = 0) state. For  N >~ 2, ~b,~(t)/~bN(O) is still exactly 
periodic with period T, but it no longer decays linearly in the first half- 
period. The results for N ----- 2 are shown in Fig. 2 in the range 0 ~ x ~< 1. 

When N >~ 4, ~bn(t)/~bu(O) has turning values at x = 1/2 and 
x = N / ( N  + 1). At  x = 1/2, the first N - -  2 derivatives o f  ~,j(t) vanish, and 
at x ---= N / ( N  § 1), ~bu(t) is negative and has a maximum for odd values o f  N 
and a min imum for even values o f  N. Finally, when x --- 1/2, 

and when x = I, 

4,.~(T/4)/4,.~(0) . . . .  1/2N 

~bu(T/2)l~bN(O) =- --  ( I /2N)[I  - -  ( - -  1)N 1 

Therefore, ~bN(t) passes through zero and becomes negative somewhere in the 
range 0 < t < 7"/4 and then remains negative through the remainder o f  the 
half-period until t = T/2. The largest negative value ~u(t)/~bu(O) can achieve 
is --  I /N, so that 

- - I /N ~ ~lu(t)/~lIu(O ) ~ 0 

for T/4 ~. t ~ T/2. 
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To investigate the the rmodynamic  limit, we put  p = NIL and express 
Cu(t) as a function of  t, p, and N. Then,  

~N(t )  (1 - -  ~ - ) ( 1  2 p c t  N-1 1 

for  0 < pct < N. Now,  in most  p rob lems  in statistical mechanics,  we are 
interested in the long-t ime behavior  o f  a many-par t ic le  system of  fixed density 
p. I f  we hold N fixed, then the limit t --~ oo is not  defined because ~N(t) is a 
periodic function in t. Thus,  we must  keep t fixed and take the the rmodynamic  
limit first. Since 

lira [1 ~- (x/n)] . . . . .  e ~ 
n -> :• 

we find f rom Eq. (26) for fixed t and p, 

lim C N ( t ) =  ~b(t) 

= C2~-2oct (27) 

which is just  the result obta ined by Lebowitz and Percus. (4) I f  we now let 
t - ,  ~ ,  then 4s(t) ~ O, as expected. 

In Fig. 2, we compare  tflN(t)/~bN(O ) with r162 for  N = 4. Clearly, 
these functions are identical near  t =--- 0 and differ as t (or x) increases until 
one becomes negative and the other  remains positive. However ,  in the 
the rmodynamic  limit, only the initial pa r t  o f  the x axis is impor tan t  and in 
this region, ~bN(t ) decays monotonica l ly  toward  zero. 

Since CN(t) is a periodic function and 

j .r dt' r = 0 
0 

then f~ dt' CN(t') is also a periodic function, so that  the limit o f  t --- ~ does 
not  exist. However ,  in the the rmodynamic  limit, f~ dt' r is a monotonical ly  
decreasing function; the limit t ~ ~ exists and the self-diffusion coefficient is 
given by 

. t  
D == l i m J  d t ' r  

t - ~  0 

-- c/2p 

It  is seen f rom Fig. 2 that  even for N as small as four, there is an interval 
near  t := 0, p ropor t iona l  to L, in which CN(t) is very close to its limiting value 
~b(t). As N increases, this interval becomes larger. It is quite reasonable to 
assume that  f rom the measurement  of  the velocity autocorre la t ion function in 
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a finite system over a fixed time interval t, (as is done in the machine com- 
putations of Alder, Rahman, Verlet, and others(90 one can extrapolate to 
find the infinite volume ~b(t) with good accuracy. 

5. D I S C U S S I O N  

Other conelation functions of interest, such as the Van Hove self- 
distribution function, can also bc calculated for v; = -t-c by the methods 
used in the appendix. It again is exactly periodic, but is much more compli- 
cated than ~bu(t) and so will not be given here. 

There is no reason why the ensemble density should be limited to that 
given in (6). Another simple possibility is 

If we now choose 

1 1 ~ Ho(v3 ~ h0(vj) 
/ z ~  N L N ho(t.'~) 

i ,  =1. ) = 1  

(28) 

ho(v ) = ,3(v) (29) 

i.e., all particles but one are initially at rest, then 

dr dv Ho(v) vCt) v[L --  rCt) - r I] '~-t 4~u(t) N L N o - - ~  (30) 
This model suffers from the drawback that ~/J/v(t) --~ l / N ,  but if we notice 
that 

~o 

~bN(0) =-- (I/N) [ dv Ho(v) c 2 

then 4,N(t)/~N(O) will approach a nonzero value in the thermodynamic limit. 
In order to illustrate the role of/x0(X ), let us briefly consider two choices 

for Ho(v) in the above model and reflecting boundary conditions: (a) for the 
first choice, 

Ho(v ) :--- .~[3(v -- c) 4- 3(v + c)] (31) 

~bN(t) is periodic with period 2L /c  as before and in the thermodynamic limit, 

~bN(t)/4J~,,(O) --,- e -"ct 

(b) For the second choice, 

Ho(V) := (~/2) e~:Vl (32) 
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~bu(t) is no longer periodic. As t -~ ~ ,  

~bN(t ) ~.~ - - l i t '  

in such a way that 
~t 

lim J o dr' ~bN(t') = 0 

J. L. Lebowitz and J. Sykes 

and 

and 

A P P E N D I X  

In this appendix, we calculate ~bu(t) for times t in the range 
0 ~ t ~ 7"/2 = L/e and ho(v ) given in Eq. (21). 

First of all, we must use the reflecting boundary conditions to specify 
the equations of motion. In the time interval [0, T/2], each trajectory makes 
one and only one intersection with the walls of the system. For a trajectory 
which starts at r with velocity c, 

v(t) ~- c, r(t) -- r -k- ct for 0 ~ t <~ (L -- r)/c 

v(t) : --c, r ( t ) =  2 L - - r - - c t  for ( L - - r ) / c  ~. t ~ L/c 

At this point, it is convenient to define a length A by t : A/c so that 
0 ~< A ~ L. Then, the previous equations can be written as 

v ( t ) - -  +c,  r ( t ) - - r - - A  for 0 ~ r  ~ L - - A  (A.I) 

and 

v ( t ) :  --c, r(t) : 2 L - - r - - ~  for L - - A  ~<r ~ L  (A.2) 

Similarly, for a trajectory which starts at r with velocity --c,  

v(t) = --c, r(t) = r - - , ~  for ~t ~<r ~<L (A.3) 

v ( t ) = c ,  r ( t ) = ) ~ - - r  for 0 ~<r ~<~ (A.4) 

In calculating the statistical average of any quantity, we first do the 
velocity integrals which determine whether the trajectories start with veloci- 
ties q-c or --c. The integrals over positions are then divided into ranges 

These two cases illustrate the two possibilities discussed in the introduction: 
either limt .... f~ dt' ~bN(t') does not exist (case a) or if it does exist, it must be 
zero (case b). 
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according to Eqs. (A.I)  and (A.2) or  Eqs. (A.3) and (A.4) and the correspon- 
ding equations o f  mot ion are used. As an example, f rom Eq. (13), 

L 

Eo(R ,  r j A/c) =- (I /2L) f,, dy [e(A -- y )  e i~ 

§ e ( y  - -  A) e i~ . 1- e ( L  - -  Z - -  y )  e ~~ 

-I- E(y -l- A -- L) e i~ e -~~ 

where �9 is the step function defined in Eq. (10). When the integrals are 
evaluated, we find 

Eo(R ,  r l A/c)  

�9 -- 1 -1-/(sin 0)[(R --  r ) / L ]  

- (1 - cos O)(1/L)[A + e ( R  - h - r ) ( R  - A - r )  - -  E(r - h - R ) ( r -  h - R )  

-e(A-R-r)(A-R-r)-e(A+R+r-2L)(A§ R+r-2L)] 
( A . 5 )  

so that 

Eo(R ,  r !  A/c)  = Eo(L  - -  r, L - -  R I A/c) 

: :  Eo*(r ,  R I A / c )  (A.6) 

We now go back to Eq. (14) for CN(t), substitute ho(v) from Eq. (21), do 
the velocity integrals, divide the position integrals into ranges, and use the 
equations o f  motions and the properties of  Eo above. Then we get 

c 2 R e  f 2 .  L 
- -  j dO I d y [ ~ ( y - -  A) E 0 ( y - -  A, ylA/ 'c)  N-1 r  

L 27r o -o  

- -  e(h - -  y )  Eo(A -- y, y [ a/c) N-l] 

' --  dO a),  d z { ~ ( y - : q  -c (N I) 2L 2 2w o o o 

• [-- , (A --  z) e -~~ .... a> + , (L  --  A --  z) d~ '(~;a-~>-'<~-~-a)j 

--  e(z --  A) ei~ "a ~.~--u~-,(,~+a--~)] + e( z  § h - -  L )  e i~ 

+ ~(,~ - -  y ) [ - ~ ( a  - z )  + ~ ( L  .-. a - -  z )  e i~176 

- -  e (z  .... A) e i~ + e(z  ~ A - L )  e i ~  ~+a-zL)q} 

• Eo(z ,  y [  A/c)  N--2 (A.7) 

The curly bracket in the second term o f  this equation can be reduced to 

- E ( y  + ,~ - -  z )  , ( z  + ,~ - -  y )  e ( y  + z - A) ~ (2L  - -  y - -  z - -  1)(1 - -  e i 9  
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so that when Eq. (A.5) is used for Lo and the step functions eliminated, 
Cu(A/c) becomes 

c 2 Re ['2" [ 
4,.,.(A/c) --  dO ( L -  A)(L- -  A _ _  hei~ u-1 

L N  ., o 
[ 

c~ 

--  [ dx  [L -- A-i- (A-- x) e i~ -t- x e i ~  
d 0 

--  ( N -  1)(1 -- c o s 0 ) ( L - -  A) 

(L A -t- (h x) e i~ + xe-i~ (A.8) X ) o  d x  . . . . .  

I f  we define 

2rt .A 
gu- lO)  = (1/2~') Re f dO ~ [ dx  [L - -  a + (a .... x)  e '~ + xe  '~ ~'-x (A.9) 

" 0 0 

then Eq. (A.8) can be written in the compact  form 

CN(A/c) : :  (c2/LN)(d/dA)[(L - -  A) g~-_x(A)] (A. 10) 

It is now a simple matter  to evaluate the integrals in (A.9) and obtain ~bN(A/c) 
f rom (A.10). The result is 

gN-l(A) = ( I / 2 N ) [ L  ^' --  (L  -- 2A) u] 

so that 

2 N  L-~! Ji (A.I1) 

I f  we now put 

t = A / c  = x L / c  

then 

CN(t) ----- c2{(1 -- x)(1 --  2x) u-x --  (I /2N)[I  -- (1 -- 2x)U]} (A.12) 

which is the expression quoted in the text. 
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